Complexity
 Lecture 35
 Sections 14.1-14.2

Robb T. Koether

Hampden-Sydney College
Mon, Nov 21, 2016
(1) The Post Correspondence Problem
(2) Complexity
(3) Conjunctive Normal Form
4. The Satisfiability Problem
(5) Assignment

Outline

(1) The Post Correspondence Problem
(2) Complexity
(3) Conjunctive Normal Form

4 The Satisfiability Problem
(5) Assignment

The Post Correspondence Problem

Definition (The Post Correspondence Problem)

Given two sets of n strings over an alphabet Σ,

$$
\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}
$$

and

$$
\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}
$$

is it possible to satisfy the equation

$$
w_{i} w_{j} w_{k} \cdots w_{m}=v_{i} v_{j} v_{k} \cdots v_{m},
$$

where each w_{i} and v_{i} is any string from the respective sets?
Repetitions are allowed and not every string need be used, but they must be indexed in the same order.

The Post Correspondence Problem

Theorem

The Post Correspondence Problem is undecidable.

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be
$\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}$
and

$\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\}$.

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be
$\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}$
and

$$
\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\} .
$$

$\mathbf{b a}$	\mathbf{c}	$\mathbf{c b}$	\mathbf{b}	\mathbf{a}	$\mathbf{b a}$	$\mathbf{a c}$
\mathbf{c}	$\mathbf{c a}$	bb	$\mathbf{c b}$	ac	a	b

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be
$\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}$
and

$$
\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\} .
$$

$\mathbf{b a}$	\mathbf{c}	$\mathbf{c b}$	\mathbf{b}	\mathbf{a}	$\mathbf{b a}$	$\mathbf{a c}$
\mathbf{c}	$\mathbf{c a}$	$\mathbf{b b}$	$\mathbf{c b}$	$\mathbf{a c}$	\mathbf{a}	\mathbf{b}

- Can it be done?

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be

$$
\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}
$$

and

$$
\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\} .
$$

- Can it be done?
- If so, then we must begin with $\left(w_{2}, v_{2}\right)$ or $\left(w_{5}, v_{5}\right)$.

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be

$$
\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}
$$

and

$$
\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\} .
$$

- Can it be done?
- If so, then we must begin with $\left(w_{2}, v_{2}\right)$ or $\left(w_{5}, v_{5}\right)$. Why?

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be

$$
\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}
$$

and

$$
\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\} .
$$

$\mathbf{b a}$	\mathbf{c}	$\mathbf{c b}$	\mathbf{b}	\mathbf{a}	$\mathbf{b a}$	$\mathbf{a c}$
\mathbf{c}	$\mathbf{c a}$	bb	$\mathbf{c b}$	ac	\mathbf{a}	\mathbf{b}

- Can it be done?
- If so, then we must begin with $\left(w_{2}, v_{2}\right)$ or $\left(w_{5}, v_{5}\right)$. Why?
- And we must end with $\left(w_{3}, v_{3}\right),\left(w_{4}, v_{4}\right)$, or $\left(w_{6}, v_{6}\right)$.

The Post Correspondence Problem

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and let the sets be

$$
\{\mathbf{b a}, \mathbf{c}, \mathbf{c b}, \mathbf{b}, \mathbf{a}, \mathbf{b a}, \mathbf{a c}\}
$$

and

$$
\{\mathbf{c}, \mathbf{c a}, \mathbf{b b}, \mathbf{c b}, \mathbf{a c}, \mathbf{a}, \mathbf{b}\} .
$$

$\mathbf{b a}$	\mathbf{c}	$\mathbf{c b}$	\mathbf{b}	\mathbf{a}	$\mathbf{b a}$	$\mathbf{a c}$
\mathbf{c}	$\mathbf{c a}$	bb	$\mathbf{c b}$	ac	\mathbf{a}	\mathbf{b}

- Can it be done?
- If so, then we must begin with $\left(w_{2}, v_{2}\right)$ or $\left(w_{5}, v_{5}\right)$. Why?
- And we must end with $\left(w_{3}, v_{3}\right),\left(w_{4}, v_{4}\right)$, or $\left(w_{6}, v_{6}\right)$. Why?

The Post Correspondence Problem

Theorem
The Post Correspondence Problem is undecidable.

The Post Correspondence Problem

Theorem

The Post Correspondence Problem is undecidable.

- The Post Correspondence Problem (PCP) can be reduced to many other decision problems.
- Thus, the undecidability of PCP implies the undecidability of many other problems.

Outline

(1) The Post Correspondence Problem

(2) Complexity

(3) Conjunctive Normal Form

4 The Satisfiability Problem
(5) Assignment

Time and Space Complexity

- There are two basic ways to measure complexity.
- Time complexity - How much time does a program require?
- Space complexity - How much memory does a program require?

Time and Space Complexity

- There are two basic ways to measure complexity.
- Time complexity - How much time does a program require?
- Space complexity - How much memory does a program require?
- For a Turing machine,
- Time complexity is measured by the number of transitions executed.
- Space complexity is measured by the number of tape cells required.

Time and Space Complexity

- There are two basic ways to measure complexity.
- Time complexity - How much time does a program require?
- Space complexity - How much memory does a program require?
- For a Turing machine,
- Time complexity is measured by the number of transitions executed.
- Space complexity is measured by the number of tape cells required.
- We will consider only time complexity.

Time Complexity

- Typically, the number of transitions required by a Turing machine depends on the input.
- We are interested in the time complexity as a function of the size (length) of the input.
- If n is the size of the input, then we seek a function $T(n)$ for the time complexity.

Time Complexity

- Typically, the number of transitions required by a Turing machine depends on the input.
- We are interested in the time complexity as a function of the size (length) of the input.
- If n is the size of the input, then we seek a function $T(n)$ for the time complexity.
- But even for inputs of the same length, the times could be different.

Time Complexity

- Typically, the number of transitions required by a Turing machine depends on the input.
- We are interested in the time complexity as a function of the size (length) of the input.
- If n is the size of the input, then we seek a function $T(n)$ for the time complexity.
- But even for inputs of the same length, the times could be different.
- We define $T(n)$ to be the worst case (maximal time) for all inputs of length n.

The Turing Machine INCR

Example (The Turing Machine INCR)

- Recall the Turing machine INCR that incremented the input.
- n is the number of bits in the number.
- n transitions are needed to reach the right end of the number.
- At most, n transitions are needed to change 1 's to 0 's and then a 0 to 1.
- The worst case is when all the bits are 1 . That case requires one additional transition, to write a 1 at the left end of the string of 0's.
- Thus, $T(n)=2 n+1$.

O, Ω, and Θ

- In general, it is too tedious, and often not possible, and not really necessary to compute exactly the function $T(n)$,
- Our primary concern is not the exact value of $T(n)$, but how fast $T(n)$ increases as n increases.
- Thus, it is enough to be able to say that $T(n) \in O(f(n))$ or $T(n) \in \Theta(f(n))$ for some known function $f(n)$.

O, Ω, and Θ

Definition (O (At least as fast as...))

The function $T(n) \in O(f(n))$ for some function $f(n)$ if there exists a constant c such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$ for some n_{0}.

O, Ω, and Θ

Definition (O (At least as fast as...))

The function $T(n) \in O(f(n))$ for some function $f(n)$ if there exists a constant c such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$ for some n_{0}.

Definition (Ω (At least as slow as...))

The function $T(n) \in \Omega(f(n))$ for some function $f(n)$ if there exists a constant c such that $T(n) \geq c f(n)$ for all $n \geq n_{0}$ for some n_{0}.

O, Ω, and Θ

Definition (O (At least as fast as...))

The function $T(n) \in O(f(n))$ for some function $f(n)$ if there exists a constant c such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$ for some n_{0}.

Definition (Ω (At least as slow as...))

The function $T(n) \in \Omega(f(n))$ for some function $f(n)$ if there exists a constant c such that $T(n) \geq c f(n)$ for all $n \geq n_{0}$ for some n_{0}.

Definition (Θ (Just as fast as...))

The function $T(n) \in \Theta(f(n))$ for some function $f(n)$ if there exists a constants c_{1} and c_{2} such that $c_{1} f(n) \leq T(n) \leq c_{2} f(n)$ for all $n \geq n_{0}$ for some n_{0}.

Outline

(1) The Post Correspondence Problem

(2) Complexity
(3) Conjunctive Normal Form

4 The Satisfiability Problem
(5) Assignment

The Satisfiability Problem

Definition (The Satisfiability Problem)

Given a boolean expression e in Conjunctive Normal Form, the Satisfiability Problem (SAT) asks whether e is true for some choice of boolean values of its variables, i.e, is e "satisfiable?"

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A boolean expression e is in conjunctive normal form (CNF) if

$$
e=t_{1} \wedge t_{2} \wedge \cdots \wedge t_{n}
$$

where for each term (or clause) t_{i},

$$
t_{i}=s_{i 1} \vee s_{i 2} \vee \cdots \vee s_{i m}
$$

where each $s_{i j}$ is a boolean variable or its negation.

- Disjunctive normal form (DNF) is similar, with \wedge and \vee reversed.
- Some definitions require that every variable x appear in every clause either as x or as \bar{x}.

Conjunctive Normal Form

Example (Examples)

- Let the variables be x_{1}, x_{2}, and x_{3}.
- An example

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{3}}\right)
$$

- Convert the expression

$$
\left(x_{1} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)
$$

from CNF to DNF.

Converting CNF to DNF

- To convert e from CNF to DNF,
- Apply DeMorgan's Law to e.

$$
\begin{aligned}
\bar{e} & =\overline{\left(x_{1} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)} \\
& =\left(\overline{x_{1}} \wedge x_{3}\right) \vee\left(x_{1} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right) \\
& =\left(\overline{x_{1}} \wedge x_{2} \wedge x_{3}\right) \vee\left(\overline{x_{1}} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee\left(x_{1} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right)
\end{aligned}
$$

Converting CNF to DNF

- To convert e from CNF to DNF,
- Write the truth table for \bar{e} and e.

x_{1}	x_{2}	x_{3}	\bar{e}	e
1	1	1	0	1
1	1	0	0	1
1	0	1	0	1
1	0	0	1	0
0	1	1	1	0
0	1	0	0	1
0	0	1	1	0
0	0	0	0	1

Converting CNF to DNF

- To convert e from CNF to DNF,
- Select the combinations that make e true.

x_{1}	x_{2}	x_{3}	\bar{e}	e
1	1	1	0	1
1	1	0	0	1
1	0	1	0	1
1	0	0	1	0
0	1	1	1	0
0	1	0	0	1
0	0	1	1	0
0	0	0	0	1

Converting CNF to DNF

- To convert e from CNF to DNF,
- Write e in DNF based on the table.

$$
\begin{gathered}
e=\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \overline{x_{3}}\right) \vee\left(x_{1} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right) \\
\vee\left(\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}}\right) \vee\left(\overline{x_{1}} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right) .
\end{gathered}
$$

Converting CNF to DNF

- To convert e from CNF to DNF,
- Write e in DNF based on the table.

$$
\begin{gathered}
e=\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \overline{x_{3}}\right) \vee\left(x_{1} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right) \\
\vee\left(\overline{x_{1}} \wedge x_{2} \wedge \overline{x_{3}}\right) \vee\left(\overline{x_{1}} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right) .
\end{gathered}
$$

- The procedure can be reversed to convert DNF to CNF.

Outline

(1) The Post Correspondence Problem

(2) Complexity
(3) Conjunctive Normal Form

4 The Satisfiability Problem
(5) Assignment

The Satisfiability Problem

Definition (The Satisfiability Problem)
 Given a boolean expression e in CNF, the Satisfiability Problem (SAT) asks whether e is satisfiable.

The Satisfiability Problem

- One method to decide the problem is to try "true" and "false" for each of the n variables.
- There are 2^{n} possible combinations, so the run time is exponential.
- Another method is to convert e from CNF to DNF, at which point the answer is obvious.
- How efficiently can we convert from CNF to DNF?

Outline

(1) The Post Correspondence Problem

(2) Complexity
(3) Conjunctive Normal Form

4 The Satisfiability Problem
(5) Assignment

Assignment

Homework

- Section 14.1 Exercises 1, 2.
- Section 14.2 Exercises 4, 5.

